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Abstract—This paper is directed towards describing the strik-
ing similarities and synergies between cloud and fog nodes
that constitute the cloud-fog-thing [Fog Network] architecture
proposed for 5G networks and the human brain-spinal cord-nerve
network model. On the one hand, the central nervous system can
be better modeled considering the duality with Fog Networks,
and, on the other hand, novel algorithms/protocols inspired from
the central nervous system can be developed for throughput and
latency performance improvement in Fog Networks.

Designing and managing large-scale Fog Networks using
stochastic geometry and machine learning is applied to determine
the optimum number of fog nodes and their locations that opti-
mize throughput and latency for 5G networks. Having observed
the close relation between the Fog Networks and the spinal cord,
these results may be adapted to increase understanding of the role
of spinal cord plasticity in learning and ultimately suggest new
means of treating central nervous system disorders associated
with the spinal cord plasticity. Inspired by the cooperation
between the brain and the spinal cord, a modified coded caching
policy is proposed for Fog Networks, that is, the files to be
stored at the fog nodes are determined as a result of continuous
information flow between cloud and fog nodes through the latent
variables assigned to files.

Index Terms—Fog networking, stochastic geometry, machine
learning, spinal cord, central nervous system.

I. INTRODUCTION

Many system advances are achieved by observing analo-
gies between systems, that while seemingly disparate, share
common properties and knowledge that has been acquired for
one system is applied to improve performance of the other. In
this paper, the striking similarities and synergies between the
cloud-fog-thing architecture based on Fog Networks that have
been proposed for 5G networks and the human brain-spinal
cord-nerve network model are highlighted, and then possible
cross fertilization opportunities are proposed.

A. Fog Networking

Latency sensitive use cases of 5G networks, such as au-
tonomous vehicles, smart cities, and certain Internet of Things
(IoT) applications, along with exponentially growing data
traffic are driving a paradigm shift in network architecture
by using computing and memory resources in the network
edge, which is referred to as fog or edge computing, while
maintaining cloud resources for appropriate functions [1].
This architecture extends cloud-like functions closer to the
end devices so that faster service can be provided to these

devices while reducing the load in the network core. Fog
computing capable units, i.e., fog nodes with communication,
computation and storage capability, along with other resources
create a fog network [1]. Fog nodes may be upgraded from the
existing nodes in the network such that each node can be a fog
node, e.g., a base station, an access point or even a mobile [2].
At this point, it is rather important and appealing to find the
number and locations of these fog nodes for a given network
while going from theory to practice.

Fog networking does not obviate the cloud; on the contrary,
the goal is productive cooperation with the cloud. A novel
wireless network architecture emerging from this cooperation
is the cloud-fog-thing network that can manage the large-
scale heterogenous data supporting a wide variety of 5G
use cases and IoT applications as shown in Fig. 1 [2]. This
architecture has been suggested as being matched to many
different cases such as in smart traffic lightning systems,
autonomous vehicles, smart grid [1], smart building [3], smart
pipeline monitoring [4], augmented reality and real-time video
analytics [5]. Despite the popularity of the cloud-fog-thing ar-
chitecture, there have been many unexplored questions related
to fog nodes, e.g., how many fog nodes should there be in
a given area, and what are their locations? Interestingly, the
answers of these questions not only improve the performance
of fog networking but, as is discussed later, may also help
in the treatment of the fundamental disorders in the central
nervous system where the spinal cord network is viewed as a
fog network.

B. Central Nervous System Network

Current knowledge about the central nervous system ba-
sically comes from experiments; however, these experiments
are not sufficient to identify the intrinsic mechanism that leads
to inefficiency in the treatment of serious spinal cord injury
and other central nervous system disorders [6]. In this regard,
modeling the central nervous system in terms of cloud and fog
networking can bring a new dimension in which cloud and fog
networking technology may be used for further understanding
of the central nervous system, and thus this may facilitate
future treatment of disorders.

The treatment of spinal cord injury and other disorders are
related to spinal cord plasticity, which refers to the learning
capability ensured by some specialized neurons at the spinal
cord similar to the fog nodes, and hence they are denoted as
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so-called fog neurons in this paper. Finding the number and
locations of the fog neurons by adapting the analyses that will
be performed for cloud-fog-thing networks is quite appealing,
because this may ease the treatment of spinal cord injury and
other central nervous system disorders, by localizing the fog
neurons that can also localize the potential causes of disorders
stemming from loss of plasticity.

C. Potential Fog and Spinal Synergies

An assessment of the basic principles of the fog and spinal
cord networks reveals astonishing similarities. For example,
the location and content aware, distributed, low latency ser-
vices of fog networking are found in the spinal cord that
rapidly provides specific services to the local parts of the
body. Indeed, the communication, computation and storage
functions performed by a fog network are very analogous to
what a spinal cord does in the central nervous system, which is
composed of the brain and the spinal cord creating the brain-
spinal cord-nerve network analogy with the cloud-fog-thing ar-
chitecture. It is worth emphasizing that the similarity between
these architectures can create synergies so that both networks
can benefit. On the one hand, the central nervous system
can be better modeled considering the duality with the cloud
and fog nodes. On the other hand, novel algorithms/protocols
can be inspired from the central nervous system for content
distributed networks involving cloud and fog nodes.

In this paper, the optimum number of fog nodes to support a
high average data rate and low transmission delay is analyzed
using stochastic geometry [7] for the cloud-fog-thing network.
Additionally, the locations of these equivalent fog nodes are
found using clustering [8], a classic unsupervised machine
learning algorithm, where the leaders of clusters will become
fog nodes. Both hard and soft clustering are considered to find
the locations of fog nodes. In hard clustering a node can only
connect to one cluster leader, whereas in soft clustering there
can be connection to more than one cluster leader. Next, the
number and locations of the so-called fog neurons, which are
responsible for plasticity that can ensure healing and that play
a key role in the treatment of serious diseases in the central
nervous system, are determined using the same analyses as
for cloud-fog-thing network after modeling the central nervous
system as brain-spinal cord-nerve network owing to the strong
analogy with cloud-fog-thing architecture. Note that it may be
quite meaningful to model the spinal cord as a fog network,
not only for facilitating the treatment of various disorders,
but also for developing new algorithms/protocols for wireless
networks. In this latter sense, a coded caching mechanism is
proposed later in the paper for fog networks inspired from the
interplay between the brain and the spinal cord.

The structure of this paper is as follows. In Section II, the
optimum number and locations of fog nodes are determined.
The central nervous system is modeled in terms of cloud and
fog, and the synergies with fog networks are highlighted in
Section III. The paper ends with the concluding remarks in
Section IV.

II. FINDING THE NUMBER AND LOCATIONS OF FOG
NODES IN HETEROGENOUS NETWORKS

Fog networking is based on the idea of extending cloud-like
functions towards the end devices through some specialized
nodes so that location and content aware, distributed, and
lower latency services can be provided to the end devices,
e.g., to the mobiles, IoT devices or sensors [2]. In this regard,
some existing nodes in the network infrastructure, which may
be a picocell, a femtocell, an access point, a router or a mobile,
are provided with the necessary resources and upgraded to a
fog node. Whatever the fog nodes are upgraded from, each
fog node must have appropriate communication, computation
and storage capability.

The efficient usage of resources by upgrading some nodes
to fog nodes in the future wireless networks can be necessary
to ensure the low latency requirements of 5G applications [9].
Also, the huge amount of data in the network cannot be solely
managed by cloud servers and it is not reasonable to process
the low-latency data in the cloud. These challenges have
revealed the intriguing interplay and dependencies between
cloud and fog networking, which has been proposed for
many areas [1]-[5]. Accordingly, the global large-scale data
processing capability of cloud networking is combined with
the location and content aware, distributed fog nodes. An
example of this network architecture is depicted in Fig. 1,
where some nodes in the existing infrastructure were updated
to fog nodes. Some data is processed at the fog nodes, and
the rest is conveyed to the cloud for processing.

Fig. 1. The integration of cloud and fog networking

There are some fundamental questions that need to be
addressed to optimize fog networking. These questions are as
follows: How many nodes should be upgraded as fog nodes in
a local area such as a park, a shopping center or a restaurant
that is covered by a fog network, and what are the locations
of those fog nodes, i.e., which nodes are the fog nodes in a
given network topology within the area of interest? The former
question will be addressed using stochastic geometry in which
each existing node is considered as a point. The latter question
is discussed within the context of machine learning. These
issues shall be discussed in the subsequent sub-sections.
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A. The Optimum Number of Fog Nodes in a Fog Network

Consider a heterogenous network in a local area, e.g., in a
park with many different nodes such as picocells, femtocells,
access points, routers and mobiles, where some of the nodes
will be upgraded to fog nodes while the remaining are ordinary
nodes with the (possibly unrealistic) assumption that any node
can become a fog node in a cloud-to-things continuum [2].
One of the fundamental question arises is what number of fog
nodes should be upgraded from the existing nodes? Indeed,
this is an optimization problem that will be solved by defining
a proper criterion. Before defining a criterion, let’s remember
the basic situations that require fog networking, which are big
data processing and low latency. In this manner, it makes sense
to define a criterion so as to maximize the data rate associated
with big data, and minimize the transmission delay regarding
the low latency.

Suppose that packets of size M are transmitted from the
end devices to the cloud through the fog nodes. In this regard,
the incoming data packets are aggregated at the fog nodes and
assume that K bits of each packet are processed while the
rest are conveyed to the cloud. Doing so yields the following
transmission delay depending on the data rate

τtrans =
M

Rfog
+

M −K

Rcloud
(1)

where the Shannon rates are

Rfog = Wlog(1 + SINRfog)

and
Rcloud = Wlog(1 + SINRcloud).

Conventional expressions employed in stochastic geometry can
be used to express the signal-to-interference-plus-noise-ratio
(SINR) as

SINRfog(i) =
Pihix

−α
i

σ2 + Ifog
(2)

where Pi is the desired transmission power and hi is the
power fading coefficient (gain) for the ith end device whose
distance from a fog node is xi. Additionally, α is the path
loss coefficient, σ2 is the noise power and Ifog is the residual
interference power at the fog node. Similarly,

SINRcloud(j) =
Pjhjy

−α
j

σ2 + Icloud
(3)

where Pj is the desired transmission power and hj is the power
fading coefficient (gain) of the jth fog node and the cloud is
at a distance of yj from the fog node.

Based on (1)-(3), and the assumption that each node can
become a fog node with a probability p, yields the following
objective function, which minimizes the total packet transmis-
sion time of N −Np ordinary nodes to the cloud through Np
fog nodes, when each fog node aggregates the packets coming
from the ordinary nodes before transmission to the cloud

Jα = min
p

N−Np∑
i=1

E[xα
i ] +

Np∑
j=1

E[yαj ]

 (4)

such that N is the total number of nodes in a given area
and p is the probability of being a fog node in which (4)
is optimized according to this value of p, which yields Np
fog nodes and N −Np ordinary nodes after the optimization.
This follows by expressing Rfog and Rcloud in (1) in terms of
(2) and (3) and then generalizing the result for Np fog nodes
and N−Np ordinary nodes. Hence, optimizing (4) minimizes
the total transmission delay, which requires the maximization
of the data rates of Rfog and Rcloud. Note that (4) can be
written as a closed form expression in terms of p for a path
loss exponent of 2 as [10]

J2 =
(N −Np)π2R2

2(Np)2
+

2Npa2

3
(5)

that leads to [10]

p =

(
6π2R2

4a2N2

)1/3

(6)

when the fog nodes constitute a circular network, whose radius
is R in which there is a cloud centered at a planar square whose
one side is 2a as illustrated in Fig. 2. Note that one can refer
to [10] for the analyses with different path loss exponents.

Fig. 2. The underlying network model

It is worth mentioning that in stochastic geometry there
are some simplifying assumptions made to obtain closed
form solutions including assuming that fog nodes constitute a
circular mesh network topology with radius R and from which
(6) is obtained. Further simulations were made to observe how
the optimum number of fog nodes, which is equal to Np, is
affected by this assumption. A simulation is performed such
that the cloud is located at the center of a planar square whose
one side is 20km and a given number of nodes are uniformly
randomly distributed around the cloud, which can be termed
as ordinary nodes and then some nodes are upgraded to fog
nodes to constitute the fog network. In the simulation, there is
not any assumption that fog nodes constitute a circular network
topology. In this setting, the optimum number of fog nodes for
N = 200, N = 400 and N = 800 are given in Fig. 3. It can
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be inferred from Fig. 3 that there is an optimum number of fog
node that minimizes the objective function, which is smaller
than N for all cases. This emphasizes that upgrading all nodes
as fog nodes does not minimize the objective function, and
thus it becomes sub-optimum. Intuitively, a node far from the
cloud can significantly increase the objective function given
in (4) if it can directly send the packets to the cloud (as a fog
node), it is, therefore, more reasonable to send the packets
to the closest fog node instead of being a fog node, which
intuitively suggests that not all nodes should be upgraded to
fog nodes.

The average optimum number of fog nodes, which can be
found analytically with the assumption of a circular network
topology, is compared with these simulation results for the
same number of total nodes in Table I where R is the radius
of the circular fog network and a is half of the one side of
the planar square covered by a cloud such that R ≤ a. As
can be seen, the analytical expression (6) gives a very good
approximate result when R = a and the total number of nodes
is not high. Notice that each fog network covers a local area
such as a park, a shopping mall or a restaurant where the
total number of network nodes is not so high that implies the
accuracy of our analytical result for practical scenarios.

TABLE I
THE AVERAGE OPTIMUM NUMBER OF FOG NODES

Simulation
Result

Analytical Result
for R = a

Analytical Result
for R = a/2

N = 200 15 14.35 9.04
N = 400 19 18.09 11.39
N = 800 24 22.79 14.35

B. The Locations of Fog Nodes in a Fog Network

Next, the optimum locations of the fog nodes will be
determined for an example heterogeneous network composed
of one high power node (HPN) and many low power nodes
(LPNs) as shown in Fig. 4, where some LPNs are upgraded
to fog nodes in case of fog networking.

Clustering, a classical unsupervised machine learning tech-
nique, is employed to find the locations of fog nodes. Nodes
are clustered based on their distances for hard clustering or
channel quality for soft clustering, so that the leader of each
cluster or cluster-head becomes a fog node. In this regard, both
hard clustering and soft clustering are studied to specify the
locations of fog nodes. In the former, each ordinary node has
to be connected to only one fog node that will be determined
according to the K-means clustering algorithm [8]. On the
other hand, nodes can be connected to more than one fog
node in soft clustering with a certain probability.

1) Hard Clustering: One of the basic clustering methods in
machine learning is the hard or K-means clustering algorithm
in which the data set is clustered in an iterative procedure,
where each iteration has two successive steps such that the
K center points of clusters are first determined, and then
each data is connected to the closest central point [11]. This
procedure is iterated, and thus the center points of clusters
change until the algorithm converges, i.e., up to some number

of iterations. In this paper, this algorithm is modified in
an attempt to find the locations of fog nodes among many
alternatives within the area of interest. The original K-means
clustering algorithm is modified, because in the original algo-
rithm the cluster-head is at the center for each cluster. Here,
the cluster-head does not have this restriction, because there
is not necessarily a node at the center of the cluster, and
for this reason the nodes that have the closest distance to
the center are deemed cluster-heads. Additionally, K is given
as a priori information in the standard K-means clustering
algorithm, whereas in the modified algorithm the value of K
is analytically determined as Np where N is the total number
of nodes and p is found analytically, e.g., as (6) when the path
loss exponent is 2.

In the proposed algorithm, the locations of fog nodes are
found by hard clustering such that the geographical locations
of the nodes residing in a 2-dimensional Euclidean space
constitute the data set and this data set is partitioned into K
clusters, where each cluster-head will be upgraded to a fog
node. The cost function to form the clusters, is given as

J =
N−K∑
n=1

K∑
k=1

γnk||z1n − z2k||2 (7)

where z1n and z2k represent the locations of ordinary nodes and
fog nodes or cluster-heads, respectively, and

γnk =

{
1 : k = argminj ||z1n − z2j ||2

0 : o.w.
(8)

which means that each point is assigned to the closest cluster-
head, or each node is connected to the closest fog node among
K alternatives according to the minimum distance criterion. It
is critical to note that there may be no node at the center points,
and thus the cluster-heads are selected among the nodes that
are the closest to these central points that lead to

z2k = argminz2
j

∣∣∣∣∣
∣∣∣∣∣z2j −

∑
n γnj ||z1n − z2j ||∑

n γnk

∣∣∣∣∣
∣∣∣∣∣
2

. (9)

Since J in (7) is reduced at each iteration, the algorithm
converges [8]. Notice that the algorithm that produces the
locations of fog nodes with modified hard K-means clustering
is presented as follows:

Algorithm-1: Finding the locations of fog nodes with
hard clustering
1: Set the value of N to the total number of nodes in the area
2: Find the value of p for a given network geometry
3: Set the number of clusters as K = Np
4: Select the K fog nodes randomly among the N number of
nodes
5: Begin: Two-step iterative procedure
6: Assign the other nodes to one of the K fog nodes so as to
minimize the Euclidean distance as given in (8)
7: Calculate the center points of clusters
8: Determine the cluster-heads or fog nodes according to (9)
9: If (even one cluster-head or fog node changes)
10: Go to step 6
11: end if
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Fig. 3. The simulation results for the optimum number of fog nodes (a) N = 200. (b) N = 400. (c) N = 800.

Fig. 4. The location of fog nodes for a heterogeneous network

12: else
13: Algorithm converges
14: end else if
15: End Two-step iterative procedure
At the end of the algorithm, the locations of Np fog nodes
are found, and the other (N −Np) nodes are assigned to one
of the fog nodes.

2) Soft Clustering: Hard clustering algorithm ignores the
quality of channels among nodes while clustering, which
can be a problem when it comes to optimizing the data
rate. In particular, the minimum Euclidean distance, which is
employed in hard clustering, can produce the poorest channel.
Based on this motivation, the locations of fog nodes are
found by a soft clustering algorithm that considers the quality
of channels. Accordingly, each node residing in the area of
interest can be a fog node depending on channels. Indeed, the
locations of fog nodes change dynamically from one channel
realizations to another. That is, if the channels among nodes
change, the location of fog nodes can change as well. A
node that is not upgraded as a fog node, can be connected to
more than one fog node, unlike the hard clustering approach.
Hence, the locations of the fog nodes as well as which node
should take service from which fog nodes are the fundamental
questions that arise here.

To address these problems, the channel matrix among nodes
are first obtained such that the nodes that have better channels
than others will become fog nodes. Then, a probabilistic soft
clustering method is followed so that each ordinary node can

connect to any fog node with a probability between 0 and 1,
e.g., γnk ∈ [0, 1]. The determination of γnk is critical, because
this can directly affect the overall data rate or throughput of
the network, which is one of the main parameters associated
with the channel quality.

The channel model where a node transmits to many fog
nodes at the same time can be considered as a downlink.
Note that the optimum power allocation that maximizes the
data rate for a downlink channel is found with a water-filling
algorithm [12]. When the connection probability is treated as
a power allocation where power is normalized to unity, the
water-filling algorithm can be used to determine the values of
γnk to maximize the data rate for clustering [13],[14]. Notice
that although water-filling algorithm has primarily been used
for power optimization, here it is used to find the similarity
measure or connection probability among nodes.

The problems of which nodes should be updated as fog
nodes, and which ordinary nodes are connected to which
fog nodes are jointly addressed in Algorithm-2. Accordingly,
there are N nodes at the beginning of the optimization whose
number is given as a priori information. The N ×N channel
matrix is obtained so that each index in the row or column
represents one node placed at one particular location. That is,
there is a one-to-one correspondence between the locations of
the nodes and the matrix indices. It is important to emphasize
that K nodes out of N will be upgraded as fog nodes, where
K can be calculated using stochastic geometry similar to hard
clustering. Then, the connection or membership matrix Γ that
demonstrates the similarity between nodes is obtained using a
water-filling algorithm. More precisely, the coefficients of each
row of the matrix is determined using a water-filling algorithm
whose sum is normalized to 1. Then, taking the average of all
rows, the K highest indices of the matrix Γ are determined
and the corresponding nodes are updated as fog nodes whereas
the rest remains ordinary nodes. A step-by-step definition of
the algorithm is given below:

Algorithm-2: Finding the locations of fog nodes with
soft clustering
1: Set the total number of nodes within the area of interest to
N as a priori information
2: Create the N ×N channel matrix H in which each index
in the row or column corresponds to one specific node
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3: Set the number of fog nodes to K out of N nodes that is
found using stochastic geometry
4: Obtain the matrix Γ that demonstrates the connection
probability among nodes using water-filling algorithm [14]
5: Find the K highest column indices taking the average of
the rows in the matrix Γ
6: Set 0 to the entries in each row of associated with the
indices of fog nodes
7: Normalize each row of Γ to 1

III. MODELING THE CENTRAL NERVOUS SYSTEM WITH
FOG NETWORKING TECHNOLOGY

The central nervous system, composed of the brain and
spinal cord, has many vital functions that control actions,
shapes behaviors, and feelings such as happiness, distress, etc.
Despite the complicated mechanism behind those functions,
they are simply the natural outcome of the data processing
at the brain and spinal cord in which data comes from the
millions of peripheral neurons. A close look at the big data
processing performed in the central nervous system reveals the
interplay between the centralized large-scale data processing
capability of the brain and the distributed low-to-medium scale
data processing capability of the spinal cord. To be more pre-
cise, the spinal cord does not only convey messages between
the brain and peripheral neurons but also process some parts of
the incoming messages coming from the peripheral neurons.
Clear evidence for the processing capability of spinal cord is
the spinal reflexes managed by spinal cord, e.g., immediately
pulling a hand away from a hot object. Another example of
spinal cord processing is the movement capability ensured
by the spinal cord, e.g., a cat can walk even if its brain is
separated from the spinal cord [15]. Besides communication
and computation or data processing functions, the spinal cord
has storage capability. For instance, motor skills developed
through practicing such as driving, biking, swimming are
stored in the spinal cord so that these skills are performed
in a rather short time interval compared to the tasks that are
performed in the brain [6].

Having communication, computation and storage capability,
the spinal cord demonstrates astonishing resemblance to fog
networking. In particular, the main goals of the spinal cord
are rapid reactions, i.e., low-latency services in response to
incoming stimuli, and to help the brain in the processing of
big data. These two features are in fact the salient features
of fog networking. That is, fog networks provide low latency
services to the end devices and partially process the data to
reduce the computational burden of the cloud [1].

The spinal cord is composed of 31 pairs of spinal nerves,
and each spinal nerve provides location and content aware
services to the specific part of the body. For example, the C5
and C6 pairs of the spinal cord control the shoulder and arm.
This structure is similar to fog networking that can provide
location and control aware services to the end users. Another
point is that spinal cord is closer to the peripheral neurons
than the brain so that it can ensure low latency services similar
to fog networking which can meet low latency requirements

due to being close to the end devices. Additionally, the
distributed nature of the spinal cord that spreads from the
medulla to the lumbar region of the vertebral column is similar
to the distributed architecture of fog networking. The other
similar features are that spinal cord has heterogeneous neurons
and seamless coverage similar to fog networks. The above
similarities describe the close analogy between spinal cord
and fog networking.

A promising network model that can be used in 5G use
cases or IoT applications is based on the integration of cloud
and fog networking termed as cloud-fog-thing architecture [2].
Here, the global centralization and large-scale data processing
capability of the cloud is combined with the distributed
location and content-aware, low-latency service capability of
fog networking. Bearing in mind the strong analogy between
spinal cord and fog networking, a dual network of the cloud-
fog-thing in the central nervous system is the brain-spinal
cord-nerve network model. This architecture is depicted in Fig.
5 such that the brain corresponds to the cloud, the spinal cord
corresponds to fog, and the thing is the analogous with nerves
or peripheral neurons.

Fig. 5. Modeling the central nervous system in terms of cloud and fog layers

The analogy of cloud-fog-thing architecture and brain-
spinal cord-nerve model can create synergies so that both
parties can benefit. On the one hand, modeling the central
nervous system as cloud and fog layers can bring a new
dimension so that the analysis used in fog networking can be
adapted to the central nervous system. This can be appealing
and intriguing not only for engineers but also for others who
wish to advance understanding of the complex mechanism
behind the fundamental tasks of the central nervous system
that, hopefully, may facilitate the treatment of disorders in
the central nervous system. On the other hand, the current
knowledge about the cooperation between brain and spinal
cord can inspire methods in cloud and fog networks for the
handling of big data. That is, understanding the central nervous
system can inspire development of novel algorithms/protocols
for fog-based wireless networks. More specifically, the acquir-
ing and maintenance of motor skills at the spinal cord by
the coordination of brain are analogous to caching in the fog
networks. Here, the motor skills correspond to the files, and
the action of acquiring and maintenance of motor skills are
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treated as searching the popular files and storing them at the
fog nodes, i.e., caching.

A. Using Fog Networking Analysis for Increased Understand-
ing of Spinal Cord Plasticity

Once the brain-spinal cord-nerve hierarchical network
model is treated as cloud-fog-thing architecture, the analyses
performed for the fog layer of this architecture in Section
II can be directly adapted to the spinal cord layer of brain-
spinal cord-nerve model with the ultimate aim of increasing
understanding of spinal cord plasticity. Recall that spinal cord
plasticity refers to some neurons at the spinal cord that have
the ability of strengthening or weakening the signal over time,
in response to increases or decreases in their activity to ensure
learning. That is, some neurons at the spinal cord are special-
ized for plasticity, which is also responsible for acquisition
and maintenance of motor skills. Since the acquisition and
maintenance of motor skills can be treated as storing files
at the fog nodes, these neurons can be considered as having
storage capability along with communication and computation
capability, and thus they may be viewed as fog neurons. Recall
that a fog node must have communication, computation and
storage capability, so that the neurons at the spinal cord that are
not capable of plasticity cannot be identified as fog neurons.

The learning mechanism or spinal cord plasticity is quite
important in the treatment of spinal cord injury and other
disorders as well as acquisition and maintenance of motor
skills [6]. Although the structure of spinal cord plasticity is
explained in [6], how many neurons should have plasticity and
what are their locations are some open critical problems. That
is, specifying the optimum number of fog neurons as well as
their locations can be quite important to localize the causes of
diseases, e.g., spinal cord injury and other disorders, and thus
may facilitate their treatment. In this regard, the analysis that
specifies the optimum number of fog neurons given in Section
II-A can be directly used when the optimality is based on
the data rate and low transmission delay, both of which are
required in the central nervous system due to the fact that
huge amount of data has to be processed in a rather short
time. Here, wireless communication is replaced with molecular
communication, which deals with the communication among
neurons [16], in which molecules diffuse from one node to
another as

Mj = Mi
Di

αi
x−2
i (10)

where Mi is the number of molecules at the input node, and
related to the transmission power Pi, and the channel hi can be
associated with the diffusion coefficient Di/αi. Determining
the locations of fog neurons is as important as finding the
number of fog neurons that is desired in the clarification of
synaptic cord plasticity. Within this scope, both hard and soft
clustering can be utilized to find the locations of fog neurons
using the analysis given in Section II-B.

B. Inspiring from the Central Nervous System for Caching in
Fog Networking

One of the important features of fog networking is caching
so that popular files are first trained, and then a local copy

of these files is stored at the fog nodes. Since fog nodes
are closer to the end devices than a cloud server, they can
meet the requests of users in a shorter time interval. Caching
at the fog nodes also reduces the network load, as well as
the computational complexity of the cloud. A dual behavior
with caching occurs in the central nervous system in the
acquisition and maintenance of motor skills such as driving,
biking, swimming. Accordingly, the spinal cord first acquires
the motor skills through the strong cooperation with brain,
which learns these motor skills with practice, and then it
maintains them. Doing so results in faster responses, because
the spinal cord is closer to the peripheral neurons than the
brain, and it alleviates the burden in the brain, both of which
are well suited to the aim of caching in fog networking.

The key point in maintaining many motor skills in the spinal
cord depends on the continuous information flow between
brain and spinal cord through the corticospinal tract [6]. This
means that even if a motor skill is stored in the spinal cord, the
brain continues to send some information. This corresponds to
the sending of information from cloud to fog nodes through
the fronthaul network after caching to keep the files up-to-date.
Notice that the information acquiring the motor skills between
the brain and spinal cord is sent through the corticospinal tract,
which can be considered as the fronthaul network between the
cloud server and a fog node. These analogies are summarized
in the Table II.

TABLE II
ANALOGIES BETWEEN CACHING, AND ACQUIRING AND MAINTAINING

MOTOR SKILLS

Brain-Spinal Cord-Nerve
Network

Cloud-Fog-Thing
Network Comments/Notes

Brain Cloud Centralized controller
Spinal Cord Fog networking Distributed networking

Corticospinal tract Fronthaul

The pathway between
the centralized
controller and

distributed nodes

Motor skills Files
Stored entities in the

distributed nodes

Motor skill capabilities have spread into many fog neurons,
e.g., consider one of the simplest motor skills, H-reflex con-
ditioning, that spreads into many neurons at the spinal cord
responsible for plasticity [6]. The incoming signal from the
brain through the corticospinal tract is combined with the
information from all relevant fog neurons that constitute the
motor skill. Note that here the necessity of brain is crystal clear
due to the fact that the patients suffering from a stroke cannot
use this motor skill although the damage is in the brain, i.e.,
there is no damage in the spinal cord. Another important point
regarding motor skills is that one fog neuron can store many
different motor skills. Considering these factors, acquiring and
maintaining of motor skills suggest a caching method similar
to the one that has been recently proposed as coded caching
whose main advantage comes from the reduced network load
[17]-[19].

Inspiration from the continuous data flow between the brain
and the spinal cord through the corticospinal tract, and the
fact that motor skills are stored according to their criticality
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[6] can lead to a new modified coded caching algorithm for
fog networks. The former feature can also be explained by an
experiment where the H-reflex conditioning disappears when
the brain is ablated [20]. The latter property suggests a model
where that the least critical file should be deleted instead
of the least recently used, which is quite different than the
traditional caching that deletes the least recently used file [21].
For instance, the motor skill of pulling hands away from a hot
object is never deleted even if this is the least recently used
motor skill. Based on these observations, a modified version
of coded caching seems appropriate. Accordingly, each file is
assigned a variable and this variable is continuously updated.
The files that have the highest variable is stored in the node
with a limited storage area. This approach ensures the cache
is updated at any time, as opposed to offline methods where
the files are updated only at the beginning of the day [18].
Additionally, the proposed coded caching policy inspired by
the central nervous system can be classified as a proactive
method because the popularity of the files is predicted with
the assigned variables for the files before the request is made
unlike online coded caching in which the files are obtained in
response to incoming requests [19].

IV. CONCLUSIONS

This paper described the striking synergies between cloud-
fog-thing [Fog Network] architecture proposed for 5G net-
works and the human brain-spinal cord-nerve network model.
Fog networking will likely have an important role in the
management of large-scale data networks, such as 5G net-
works, that enable low latency as well as high throughput.
By determining the optimum number and locations of the
fog nodes for a given network to optimize the average data
rate and transmission delay, via stochastic geometry and
machine learning, these results were proposed to enhance the
understanding of the hierarchical network model in the central
nervous system dubbed brain-spinal cord-nerve model. That
is, the architecture that models the relation between the cloud
and fog layer can be used in the modeling of the central
nervous system depending on the strong analogy between
the spinal cord and fog networking. Modeling and analyzing
the inherent mechanism within the central nervous system
using the models and tools from wireless networking may
be a promising approach to shaping the understanding of the
physiology of the central nervous system as well as potentially
facilitating the future treatment of disorders in the brain and
spinal cord. Using the analogy can be inspiring in the design
of novel algorithms and protocols for wireless networks such
as the novel caching algorithm proposed in this paper.
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